导航:首页 > 音乐教学 > 音乐课和大数据

音乐课和大数据

发布时间:2021-01-23 19:14:44

『壹』 大数据专业主要学什么课程

大数据专业的职业发展主要分为3个方向:
1、大数据开发方向; 所涉及版的职业岗位为:大数权据工程师、大专数据维护工程师、大数据研发工程师、大数据架构师等;
2、数据挖掘、数据分析和机器学习方向; 所涉及的职业岗位为:大数据分析师、大数据高级工程师、大数据分析师专家、大数据挖掘师、大数据算法师等;
3、大数据运维和云计算方向;对应岗位:大数据运维工程师;
以最基础的大数据开发为例,入门最低薪资可达8K-1W,且该行业的属薪资增长率极高。据某求职网站薪资显示,资深大数据工程师的平均在50K/月,可谓非常有“钱景”了。

『贰』 大数据的课程都有哪些

大数据本身属于交叉学科,涵盖计算机、统计学、数学三个学科的专业知识。回所以大数据的答课程内容,基本上也是围绕着三个学科展开的。
数理统计方面:数学分析、统计学习、高等代数、离散数学、概率与统计等课程是基本配置。
计算机专业课程:数据结构、数据科学、程序设计、算法分析与设计、数据计算智能、数据库系统、计算机系统基础、并行体系结构与编程、非结构化大数据分析等,也是必备课程。
而想要真正找到工作的话,大数据主流技术框架,也要去补充起来,这才是找工作当中能够获得竞争力的加分项。

『叁』 音乐软件有大数据分析吗

有,最简单的排行榜就是个最容易理解的例子,比如一些音乐上软件会根据用户听歌分析用户大概的喜好,用于推荐音乐

『肆』 大数据和AI怎么与现代教育相结合

本文长度为2600字,建议阅读8分钟

未来大数据、人工智能对教育的变革将持续发酵。

欢迎转载,须署名并注明来自“刘鹏看未来”公众号,并保留本句。

比尔盖茨曾预言,“5年以后,你将可以在网上免费获取世界上最好的课程,而且这些课程比任何一个单独大学提供的课程都要好。”

现在看来,虽然并不是每个网上课程都能强过大学教程,但是在线教育已经成为现实,据业内人士估算,目前中国在线教育用户数量过亿,市场规模达数千亿元,而且线上学习者也是受益良多。

不仅在线教育成为了新的风口,同时在大数据与人工智能的加持下,教育行业的相关应用正在进入深水期,现代教育的形式正在悄然改变。

大数据+AI赋能教育

目前,大数据+AI正在赋能各行各业,教育也不例外,人脸识别、语音识别等智能技术开始用于语文、英语、音乐等学科,为教育提供更加智能化、个性化的解决方案。

从教学过程来看,落实到授课、学习、考评、管理等各个方面,大数据+人工智能可以使教育在形式和内容方面都能趋于多样化。

授课

“不得不承认,对于学生,我们知道得太少。”这是卡耐基梅隆大学教育学院的一句经典名言,同时也是教育领域普遍存在的议题。

对于80、90以及更早的几代,从小学到大学接受的都是生产线教育,一代学生应用同一套教材,一个学科由一个老师负责,并通过同一套标准进行考核,因为个性化的私人教育仍属奢侈品。

现在,大数据与AI可以帮助轻松实现自适应教育与个性化教学。在教学方式方面,智慧课堂可以为老师提供更为丰富的教学手段,全时互动、以学定教,老师上课时也不再是只有一本教科书,而是可以任意调取后台海量的优质学习资源,以多种形式展现给学生。

比如,语音识别和图像识别在教育上的应用,大大提高了师生的教学体验。对于某个英语句子,可以通过手机拍照上传到云端,系统会根据海量的语音素材,用合适的语气和语调阅读这句话,还可以与语音测评技术结合,让学生跟读这句话,并由系统做出测评并反复朗读打分。

同时,通过虚拟现实、增强现实与大数据的珠联璧合,尽可能还原教育场景,让学生爱学、乐学,学习效果也能有质的飞跃。比如谷歌通过引入AR与VR技术,创造教学应用“实境教学”,正在悄然改变课堂的活动方式。

在教学过程中,通过收集和分析学生日常学习和完成作业过程中产生的数据,老师即能准确知晓每个学生的知识点掌握情况,为每一位学生有针对性地布置作业,达到因材施教的效果。

此外,未来机器人教学也将成为一种趋势,此前在乔治亚理工学院的一个300多人的课堂上,人工智能机器人教吉尔沃森(Jill Watson)担任了一个月助教,会在第一时间回复邮件,而且口吻并不机械,因此并没有人发现她其实是一个机器人。

学习

对于学生而言,在学习过程中,一方面可应用大数据技术,根据知识点的相互关系,制作知识图谱,制定学习计划,另一方面,数据挖掘技术可以帮助进一步分析学生个人的学习水平,并建立与之相匹配的学习计划,并由AI系统确定如何为学生提供个性化补充指导,以帮助高效学习,避免题海战术。

比如,过去需要3个小时练习的考题,也许真正需要掌握的知识点只需要花费半个小时。那么应用大数据与人工智能,就可以不断对学生的学习成果进行评估,并有针对性地推荐适合每个学生的练习,节约时间,却能达到更好的学习效果。

同时,利用图像识别技术,也能进一步提高学习效率。如今,学生们可以通过手机拍摄教材内容或作业题目,分析照片和文本,并显示相应的要点与难点。随后,在线课堂、网络链接,以及教师上传的PPT以及 PDF文件等,为自主学习提供了更多可能性,整个过程运用机器学习和自然语言处理技术来收集处理。

另外,在线教育发展得如火如荼,通过提供视频教学、谜语、游戏等灵活多样的课程形式以及优质丰富的课程内容,使学习不只限于某时某地,可以灵活有效地安排学习计划。

其中,就编程而言,越来越多孩子通过在线教育进行学习。如编程猫依靠人工智能和数据挖掘系统,为6~16岁青少年提供了图形化编程平台,并针对不同学生进行差异化课程推送。学生在平台上通过使用图形化编程语言创作游戏、软件、动画、故事等作品,可以同步锻炼提升逻辑思维能力、任务拆解能力、跨学科结合能力和团队协作能力等。

考评

在传统教育中,考试与评价可以说耗费了老师们的大量时间。如今,大数据、文字识别、语音识别、语义识别等技术的日趋成熟,使得规模化的自动批改和个性化反馈走向现实。

通过应用大数据与人工智能,老师只需将需要批阅的试卷进行扫描,就能实时统计并显示扫描过的试卷份数、平均分、最高分,以及最集中的错题和对应知识点,一目了然,方便进行全面、实时分析。

如果需要对几十万、几百万份考试试卷进行分析,也能通过精准的图文识别以及海量文本检索技术,快速核对检查所有试卷与目标相似的文本,并迅速提取并标注出可能存在问题的试卷,帮助实现智能测评。

在这方面,科大讯飞可以说走在行业前沿,其英语口语自动测评、手写文字识别、机器翻译、作文自动评阅技术等已通过教育部鉴定并应用于全国多个省市的高考、中考、学业水平的口语和作文自动阅卷。

管理

如果说学习者大多只是关注“学”的部分,那么学校教育则需要在教学之外,进一步分析教育行为数据,做好管理工作。通过智能技术,充分考虑包括教务处、学生处、校办、校务处等部门在内的校园管理需求,学校可进一步采集、记录、分析教与学及其相关教育行为,更好地勾勒出教育教学的真实形态,有效推进教学信息化。

目前,一些高校已经建立了学生画像、学生行为预警、学生家庭经济状况分析、学生综合数据检索、学生群体分析等功能应用,帮助更好地分辨学生在专业学习或就业方向上的潜能,从而为学生提供个性化的管理与培养方案。

例如,面对多样的选课需求,如何合理排课成为一个亟待解决的难题,而在没有人工智能的时候,老师排课往往需要几周时间,还不能保证让学生都满意。现在用人工智能算法进行排课,学生只需提交自己的课程选择,系统可以结合课程、教室、师资进行快速的排课,大大提高效率与学生满意度。

在教育领域,这只是开始,大数据、人工智能对教育的变革还将持续发酵。未来,以大数据实现教育个性化,用人工智能赋能教育,在成倍放大教育产能的同时,将使得优质教学资源得到充分利用,从而做到因材施教、因人施教。

对此,我们不仅要仰望星空,更要脚踏实地。正如教育家叶圣陶先生所言,教育是农业,而非工业。不仅教育需要一个发展过程,同时孩子们也如农作物一般需要成长时间,而大数据与人工智能则将成为其生长期重要的养分与辅助力量。

图片来自网络。

编辑:黄继彦

校对:王红玉

若您在阅读文章过程中发现任何错误,请在文末留言,或到后台反馈,经小编确认后,数据派将向检举读者发8.8元红包。

同一位读者指出同一篇文章多处错误,奖金不变。不同读者指出同一处错误,奖励第一位读者。

感谢一直以来您的关注和支持,希望您能够监督数据派产出更加高质的内容。

『伍』 大数据在教育行业是如何运用的

1、重心变化
在大数据时代,教师的工作不再简单的是知识传授,而是将知识的输出形式变得多样化,关注学生的个性特征。将统一形式、集体化的教学转变为信息技术支持下的教学。也就是说在了解学生的认知能力和知识结构的前提下,将知识进行迁移、整合并进行传授。
2、精准满足需求
这里所说的精准满足用户需求,就是说要将教育信息及时的传送给有需求的用户。譬如一个学生近期要进行英语培训,那么有关英语培训的信息会及时的传送给该学生。根据用户的学习习惯、生活习惯会有一个智能的数据匹配,这样一来,该用户所收到的资讯和信息也正是自己所需求的。
3、精准进行广告投放
在大数据时代,用户的的行为习惯很容易通过一些数据分析推测出来。一些教育及培训机构可以通过数据分析,将用户进行锁定进行广告的投放。譬如用户打开手机的频次以及用户在某一时间段的习惯性行为。通过大数据可以将自己的广告精准投放给需求的用户。
除此之外,互联网和大数据的发展,还给我们带来发展个性化的机会,可以说在教育学上是有非常大的意义的。那些所谓的学习不好的学生,如果他们在某些方面有一定的特长,同样发挥其特长,不再是标准化的教育。
大数据技术可以在教育平台上跟踪和关注老师和学生的教学、学习过程,记录老师和学生的课堂表现以及课下行为的数字化痕迹,通过在教育活动中点滴微观行为的捕捉,为教育管理机构、学校、老师和家长提供最直接、客观、准确的教育结果评价等。
可以说,大数据在教育领域的运用是当代教育发展的必然趋势。

『陆』 大数据课程。。是什么

大数据时代,数据的体量结构、获取方式、挖掘处理、分析呈现等等方面都发生了变化,由此版衍权生出大数据技术,包括数据的采集、存取、清洗、挖掘、可视化等等,产生了新的人才需 求,并且处于紧缺状态,来自麦肯锡全球研究所的另一项调查显示,预计到2018年,美国将面临大约150万大数据专家的短缺,据国内大数据权威专家估算,5年内,大数据人才缺口也将高达130万左右。

『柒』 大数据专业课程有哪些

首先我们要了解语言和Linux操作系统,这两个是学习大数据的基础,学习的顺序不分前后。
Java :只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据。基础
Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。
好说完基础了,再说说还需要学习哪些大数据技术,可以按我写的顺序学下去。
Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapRece和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapRece是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。
记住学到这里可以作为你学大数据的一个节点。
Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。
Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。
Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。
Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapRece程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。
Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapRece、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。
Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。
Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。
Spark:它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。

『捌』 大数据要学哪些课程

大数据存储阶段:百hbase、hive、sqoop。
大数度据架构设计阶段:Flume分布式、Zookeeper、Kafka。版
大数据实时权计算阶段:Mahout、Spark、storm。
大数据数据采集阶段:Python、Scala。
大数据商业实战阶内段:实操企业大数据处理业务场景,分析需求、解决方案实施,技术实战应用。

『玖』 大数据与教育的结合,体现在哪些方面

可以说自从互联网技术越来越发达之后,大数据分析成为了许多行业的独门秘籍。
如果内说问大数容据与教育的结合,那么更多的就是体现在数据分析方面。
像我们机构在用的什么书,什么云,染什么的,还是染书什么的。
专属的MA系统,大数据实时监测,高性能实时计算引擎,让数据分析更实时,更灵活和高效;简单高效的数据分析工具,不懂技术也能玩转数据;为网站的精细化运营决策提供数据支持,进而有效提高企业的投资回报率。
在数据化学员管理方面,学员数据报表分类汇总,精细化学员档案管理;招生专属CRM,将学员线索掌握在企业手里,有效提高转化,减少客户流失;报班选课,结课批量操作、一键完成,让教学运营管理形式形成,完成闭环。
可以说,大数据的应用,方便的教育管理,更是便捷了教育工作。

阅读全文

与音乐课和大数据相关的资料

热点内容
爱情围墙歌词 浏览:230
道奇酷威广告背景音乐 浏览:106
比喻轻音乐之美的文字 浏览:542
小号音乐下载 浏览:578
歌曲专辑图下载地址 浏览:867
财神驾到歌曲mp3下载 浏览:734
琴歌指弹海阔天空吉他谱 浏览:355
下载mp4格式的音乐 浏览:352
电脑听音乐用什么 浏览:512
最好酷狗音乐播放器 浏览:502
信乐团队的假如简谱 浏览:243
平安酷狗音乐 浏览:760
佳人轻抚桃花mp3下载 浏览:453
infinite网易云音乐 浏览:844
岁月赵忠祥背景音乐 浏览:980
如何将电脑的歌体添加到苹果音乐 浏览:672
fade钢琴mp3 浏览:86
奔跑吧兄弟宋仲基背景音乐 浏览:806
成都彩虹小学音乐老师 浏览:496
凤凰传奇星光歌曲点评 浏览:930